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1. Introduction and Summary. Clenshaw [1, 2] has described a simple and effec- 
tive method for summing a Chebyshev series based on the recurrence relation be- 
tween the Chebyshev coefficients. He has further pointed out that the same method 
could be used to sum a series of any set of functions which are generated by a linear 
recurrence relation [1]. Such a set of functions is a set of orthogonal polynomials 
[3,4]. 

This paper describes the application of Clenshaw's technique to the summing 
of orthogonal polynomial series and extends his principle to the evaluation of any 
derivative of an orthogonal polynomial series. Applications to least square curve- 
fitting are discussed and a convenient method is described for interpolating first and 
higher order derivatives of a function tabulated at equidistant or non-equidistant 
points. 

2. Summing the Polynomial Series. Any set of polynomials which are orthogonal 
over an interval of the real line or orthogonal over a discrete set of real numbers 
can be shown to satisfy a three-term recurrence relation [4, 5] 

(1) pr(X) = (YrX - ar)pr-(X) - I3rpr-2(X) for r > 2 

with 

pi(x) = (,yx - a,)po(x) 

and 

po(x) = -Y. 

In these equations pr(X) is the polynomial of degree r and ar, O3r and ^Yr are con- 
stant coefficients which are usually simple and well known. 

The recurrence relation (1) can be used to sum a polynomial series 
N 

(2) f(x) = ZCrpT(X) 
r=O 

by two methods. In the first, due to Forsythe [5], the partial sum 
n 

(3) Sn(X) = ZCrpr(X) 
r=O 

is calculated from Sn-1(x) immediately after pn(X) is generated by the recurrence 
relation, for increasing values of n till n = N. Then f(x) = SN(x). 

An alternative procedure is based on Clenshaw's method for summing a Cheby- 
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shev series. A set of quantities Br is defined by the formulae 

B, = O for r > N, 
(4) 

Br = Cr + (Yr+lX - ar+l)Br?+ -13r+2Br+2 for 0 < r ? N. 

By substituting the recurrence relation (1) into (2) and using (4) it can be shown 
that the series is given simply by 

(5) f(x) = yoBo. 

Since Bo can be calculated by successively evaluating the quantities BN , BNO,- 
etc. the series is quickly summed with less than 3N multiplications and additions, 
approximately N multiplications faster than Forsythe's method. 

The Clenshaw procedure for summing a Chebyshev series is a special case of 
this process and is obtained by substituting in (1) and (4) the coefficients which 
generate the Chebyshev polynomials: 

ar = ?0 O3r = 1 for all r; Tr = 2 for r > 2; 'Yo = 'Yi = 1. 

3. Errors. To examine the possibility that errors might build up disastrously 
during the calculation, suppose that Er is the error introduced during the calcula- 
tion of Br from Br+? and Br+2 due both to rounding and to inaccuracies in the co- 
efficients ar+?1 , Yr+j and 1r+2. If the total error in Br is given by Er then for r < N 

(6) Br + Er = Cr + Er + (jYr+lX - ar+l)(Br+l + Er+?) - 3r+2(Br+2 + Er+2) 

from which it follows that 

(7) Er = Er + (Yr+lX - ar+l)Er+l - r+2Er+2. 

Clearly since Er = 0 for r > N the errors Er obey the same recurrence relation as 
the quantities Br. The final error is therefore given by 

N 

(8) 'yoEo = ErPr(X). 
r=O 

This shows that the rounding error introduced in the rth step, Er , only contributes 
an error Erpr(X) to the final answer and does not increase the errors introduced in 
each of the following r steps. This is a generalization of a similar result obtained 
by Clenshaw for a Chebyshev series and shows that errors do not build up appre- 
ciably when a polynomial series is summed by Clenshaw's procedure. 

A similar error analysis of Forsythe's method shows that the error accumulation 
is greater than in Clenshaw's method. Since Forsythe's method is also about N 
multiplications slower, Clenshaw's procedure is to be preferred for both accuracy 
and speed. 

4. Summing the Derivatives of Polynomial Series. The first derivative of the 
polynomial series 

N 

(9) f'(x) E CrPr (X) 
r=1 

can be evaluated in a manner similar to Clenshaw's technique for summing the 
series. By taking the derivative of (1) a new recurrence relation involving the 
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derivatives of the polynomials pr'(x) is obtained 

(10) pr'(x) = (yrx - ar)pr$l(X) - I3rPr-2(X) + -Yrpr-l(X) for r > 2 

with 

pl'(X) = -ypO(x). 

By substituting (10) into (9) and using the quantities Br defined in (4), it follows 
that 

N 

(11) f'(x) = ZBrYrpr-1(X) 
r=1 

The right-hand side of (11) can be treated as a polynomial series. It can therefore 
be summed by defining a new set of quantities, Br', such that 

Br' = 0 for r > N, 

(12) Br' = _YrBr + (_YrX -ar)Br+i - 3r+lBr+2 for 1 < r < N. 

The series in (11) is then given by 

(13) f(x) = yoB,'. 

The derivative of the series at any value of x can therefore be obtained by calcu- 
lating successively the set of quantities 

BN ) BN-1 X .. X BO, BN', BN-1, ** , B1. 

Since the series is still given by -yoBo it follows that both the series and the deriva- 
tive can be evaluated with as few as 6N multiplications and additions. 

An error analysis can be carried out similar to that in the previous section. 
Quantities Er and Er are defined as in (6) and (7). Let _YrEr' be the rounding error 
introduced in the calculation of Br' in (12) and let Er' be the total error in Br' 

Then following an argument similar to that used in the derivation of (7) it can be 
shown that 

(14) Er' = yr(Er + Er') + (-yrx - ar)Er+1 - fr+,Er+2. 

It follows that the total error in the derivative is 
N 

(15) -yoE,' = Z [6rpr'(X) + Er'YrPr-Pl(X)] 
r=1 

which is approximately twice the error in the series if Er Er 'Yr. However, since 
the derivative may be smaller in magnitude, the percentage error in the derivative 
may be higher than in the series. 

The same principle can be extended to evaluate higher order derivatives of the 
series. We define sets of quantities for 0 ? k ? N - 1, 

Brk+l = 0 for r > N, 

(16) Brk+l = -tBrk + (ytX - a t)B kr+ - 3t+1B kr+ for N > r > k + 1, 

Br = Cr for 0 < r < N 

in which t = r - k. To calculate the mth derivatives, 0 < in < N, the sets 

{Br?}, {Br }, . . {Brm} 
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are generated successively and the mth derivative is given by 

(17) fm(x) = m!yoBmtm. 

This takes less than 3N(m + 1) multiplications and additions and there is no dis- 
astrous error accumulation. 

5. Application to Curve Fitting and Interpolation. Besides its obvious application 
to series of the orthogonal polynomials found in applied mathematics the algorithm 
described above can be used to improve Forsythe's method of least square curve- 
fitting [5]. In this Forsythe has described a method for calculating the coefficients 
a., f3 or I Yr and Cr for a series of orthogonal polynomials which fits in the least square 
sense a set of experimental points which are not necessarily equidistant. Given these 
coefficients the above algorithm may be used to evaluate the fitted function or any 
of its derivatives for any value of x. 

If the degree of Forsythe's orthogonal polynomial series is one less than the 
number of points being curve-fitted, Forsythe's series fits the points exactly and 
can therefore be used for interpolation. A comparison of the number of arithmetic 
operations involved shows, however, that this method would be slower than Aitken's 
interpolation method [6]. Since Aitken's procedure also permits an easy estimate of 
the error, the use of Forsythe's polynomial series for simple interpolation has little 
or no advantage over Aitken's method. 

However, when it is coupled with the algorithm for evaluating derivatives of 
the polynomial series a simple method is discovered for interpolating a first or higher 
order derivative of the tabulated function. It has been used successfully for this 
purpose on a number of physical problems [7]. It was found that large errors may 
appear in the calculation of the derivatives, especially the higher derivatives. These 
arise because of cancellations during the calculation of a7, , ( X and cr especially 
when two or more of the points in the table are close together. In such cases other 
methods of interpolating the derivatives would be equally inaccurate. 
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